An extended polynomial GCD algorithm using Hankel matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A parallel extended GCD algorithm

A new parallel extended GCD algorithm is proposed. It matches the best existing parallel integer GCD algorithms of Sorenson and Chor and Goldreich, since it can be achieved in O (n/ logn) time using at most n1+ processors on CRCW PRAM. Sorenson and Chor and Goldreich both use a modular approach which consider the least significant bits. By contrast, our algorithm only deals with the leading bit...

متن کامل

GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation

A heuristic algorithm, GCDHEU, is described for polynomial GCD computation over the integers. The algorithm is based on evaluation at a single large integer value (for each variable), integer GCD computation, and a single-point interpolation scheme. Timing comparisons show that this algorithm is very efficient for most univariate problems and it is also the algorithm of choice for many problems...

متن کامل

A Lanczos bidiagonalization algorithm for Hankel matrices

This paper presents a fast algorithm for bidiagonalizing a Hankel matrix. An m×n Hankel matrix is reduced to a real bidiagonal matrix in O((m+ n)n log(m+ n)) floating-point operations (flops) using the Lanczos method with modified partial orthogonalization and reset schemes to improve its stability. Performance improvement is achieved by exploiting the Hankel structure, as fast Hankel matrix–ve...

متن کامل

Fast Polynomial Transforms Based on Toeplitz and Hankel Matrices

Many standard conversion matrices between coefficients in classical orthogonal polynomial expansions can be decomposed using diagonally-scaled Hadamard products involving Toeplitz and Hankel matrices. This allows us to derive O(N(logN)) algorithms, based on the fast Fourier transform, for converting coefficients of a degree N polynomial in one polynomial basis to coefficients in another. Numeri...

متن کامل

Inversion of Mosaic Hankel Matrices via Matrix Polynomial Systems

Heinig and Tewodros [18] give a set of components whose existence provides a necessary and sufficient condition for a mosaic Hankel matrix to be nonsingular. When this is the case they also give a formula for the inverse in terms of these components. By converting these components into a matrix polynomial form we show that the invertibility conditions can be described in terms of matrix rationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1992

ISSN: 0747-7171

DOI: 10.1016/0747-7171(92)90003-m